Electrolysis [S]

- 1. The electrolysis of a molten binary salt produces its constituent elements.
 - a. Define the term *electrolysis*: [2]
 - b. The electrolysis of molten iron(III) chloride produces elemental iron and chlorine.
 - i. Write a balanced equation, including state symbols, for the overall process: [3]
 - ii. Write the half-equation for the anode: [3]
 - iii. Write the half-equation for the cathode: [3]
 - c. Calculate the volume of chlorine gas that can be produced by the electrolysis of molten lead(II) chloride for 300 seconds at a current of 0.1A. The faraday constant is 96,000 coulombs per mole. [4]

- 2. The electrolysis of a dilute sulphuric acid solution was originally used to determine the chemical formula of water.
 - a. What ions are present in the solution due to the sulphuric acid? [2]
 - b. What ions are present in the solution due to the water? [2]

- c. Write half-equations for the process occurring at each electrode: [6]
- d. Determine the charge, in coulombs, required to produce 20cm³ of oxygen gas: [3]

- e. Suggest a reason for the inclusion of sulphuric acid in this experiment: [1]
- 3. The electrolysis of brine (saturated sodium chloride solution) is very important in industry.
 - a. Name the gases produced at the:
 - i. Anode: **[1]**
 - ii. Cathode: [1]
 - b. What is the purpose of the partially permeable membrane? [2]
 - c. Suggest why it is very important to have the anode made of a chemically inert substance: [1]
- 4. Fill in the following table with the *formulae* of the electrolysis products: [15]

KBr(l)	Na ₂ SO ₄ (aq)	
Pb(NO ₃) ₂ (aq)	Mgl ₂ (I)	
CaCl ₂ (aq)	Zn(OH) ₂ (aq)	

Electrolysis [S]

- 1. The electrolysis of a molten binary salt produces its constituent elements.
 - a. Define the term *electrolysis*: [2]

breaking down a compound [1]

using electricity [1]

- b. The electrolysis of molten iron(III) chloride produces elemental iron and chlorine.
 - i. Write a balanced equation, including state symbols, for the overall process: [3]

 $2FeCl_3(I) \rightarrow 2Fe(I) + 3Cl_2(g)$ [formulae, balance, state symbols]

ii. Write the half-equation for the anode: [3]

 $2CI^{-} \rightarrow CI_2 + 2e^{-}$ [formulae, balance, charges]

iii. Write the half-equation for the cathode: [3]

 $Fe^{3+} + 3e^- \rightarrow Fe$ [formulae, balance, charges]

c. Calculate the volume of chlorine gas that can be produced by the electrolysis of molten lead(II) chloride for 300 seconds at a current of 0.1A. The faraday constant is 96,000

coulombs per mole. [4]

charge passed = 300 * 0.1 = 30 coulombs [1]

moles e⁻ = 30/96000 = 3.125 x 10⁻⁴ moles [1]

moles $Cl_2 = 3.125 \times 10^{-4} / 2 = 1.5625 \times 10^{-4}$ moles (2:1 ratio) [1]

vol $Cl_2 = 1.5625 \times 10^{-4} \times 24000 = 3.75 \text{ cm}^3$ [1]

- 2. The electrolysis of a dilute sulphuric acid solution was originally used to determine the chemical formula of water.
 - a. What ions are present in the solution due to the sulphuric acid? [2]

 H^{+} [1] and SO_{4}^{2-} [1] (allow HSO_{4}^{-})

b. What ions are present in the solution due to the water? [2]

 H^{+} [1] and OH^{-} [1]

c. Write half-equations for the process occurring at each electrode: [6]

Anode: $4OH^- \rightarrow 2H_2O + O_2 + 4e^-$ [formulae, balance, charge]

Cathode: $2H^+ + 2e^- \rightarrow H_2$ [formulae, balance, charge]

d. Determine the charge, in coulombs, required to produce 20cm³ of oxygen gas: [3]

moles $O_2 = 20/24000 = 8.333 \times 10^{-4} \text{ mol} [1]$

moles $e^{-} = 4 * 8.333 \times 10^{-4} = 3.333 \times 10^{-3} \mod [1]$

charge = 3.333 x 10⁻³ * 96000 = 320 coulombs [1]

e. Suggest a reason for the inclusion of sulphuric acid in this experiment: [1]

it facilitates the conducting of electricity [1]

- 3. The electrolysis of brine (saturated sodium chloride solution) is very important in industry.
 - a. Name the gases produced at the:
 - i. Anode: **[1]**

chlorine [1]

ii. Cathode: [1]

hydrogen [1]

b. What is the purpose of the partially permeable membrane? [2]

it prevents Cl₂ at the anode from reacting with the OH⁻ ions [1]

the bleach/HOCl formed would contaminate the NaOH(aq) produced [1]

c. Suggest why it is very important to have the anode made of a chemically inert

substance: [1]

the chlorine produced there may react with it otherwise [1]

4. Fill in the following table with the *formulae* of the electrolysis products: [15]

KBr(l)	K [1] and Br ₂ [1]	Na ₂ SO ₄ (aq)	$H_2\left[1\right]$ and $H_2O\left[1\right]$ and $O_2\left[1\right]$
Pb(NO ₃) ₂ (aq)	Pb [1] and H_2O [1] and O_2 [1]	Mgl ₂ (I)	Mg [1] and I ₂ [1]
CaCl ₂ (aq)	H ₂ [1] and Cl ₂ [1]	Zn(OH) ₂ (aq)	Zn [1] and H_2O [1] and O_2 [1]